当前位置: 首页 > 励志 > 励志故事 > 数学名人故事18篇 美文标题

数学名人故事18篇

时间:2020-04-21 09:35 来源:散文网(poindextercon.com) 作者: 阅读:

数学名人故事18篇

  数学名人故事(一):

  天才由于积累,聪明在于勤奋。-----华罗庚

  1930年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生”“他是在哪个大学教书的”最终还是一位江苏籍的教员慢吞吞地说:“我弟弟有个同乡叫华罗庚,他只念过初中。熊庆来惊奇不已,将华罗庚请到清华大学来。

  从此,华罗庚就成为清华大学数学系助理员。第二年,他的论文开始在国外著名的数学杂志陆续发表。几年之后,华罗庚被保送到英国剑桥大学留学。他提出的理论被数学界命名为“华氏定理”。

  数学名人故事(二):

  高斯,德国著名数学家,并有“数学王子”的美誉。小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书,高斯有一个很出名的故事:用很短的时间计算出了小学教师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。

  数学名人故事(三):

  塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,进取思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。

  数学名人故事(四):

  数学名人小故事—苏步青

  苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨教师。第一堂课杨教师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有职责。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最终一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。

  杨教师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨教师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只明白读书、思考、解题、演算,4年中演算了上万道数学习题。

  数学名人故事(五):

  祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".之后发现古率误差太大,圆周率应是"圆径一而周三有余",可是究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在7.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,此刻无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家提议把π=叫做"祖率".

  数学名人故事(六):

  数学名人小故事-康托尔

  由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,之后几年,康托尔对这类“无穷集合”问题发表了一系列文章,经过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力最终摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。真金不怕火炼,康托尔的思想最终大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。

  数学名人故事(七):

  20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的提高,大大促进了社会生活的提高.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受教师的器重.在费克特教师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.

  数学名人故事(八):

  第一位女数学家--希帕蒂娅

  古希腊是数学的故乡。古希腊人为数学的提高耗费了很多心血甚至生命,做出了卓越的贡献。这个礼貌古国哺育了许多数学家,象泰勒斯、毕达哥拉斯、欧几里德、阿波罗尼斯、阿基米德、托勒玫、海伦、丢番图等。希帕蒂娅(Hypatia)——这位有史以来的第一位女数学家也诞生在那里。

  公元前47年,罗马统治者凯撒大帝指使纵火焚毁了停泊在亚历山大的埃及舰队,大火延及该城,殃及图书馆,代表着希腊礼貌的很多藏书和五十万份手稿付之一炬。基督教兴起以后,出于愚昧迷信和宗教狂热,基督教的领袖们排斥异教的学问,尤其鄙视数学、天文和物理学,基督徒是不许“沾染希腊学术这个脏东西的”。公元325年,罗马皇帝康斯坦丁以用宗教为统治工具,逐渐把数学、哲学、教育等都置于宗教的控制之下。此后,基督徒摧毁希腊文化的行径变得有恃无恐、变本加厉。有人甚至说:“数学家应当被野兽撕碎或者活埋。”希帕蒂娜就诞生在这样一个科学开始衰退、黑暗即将降临的时代。

  公元370年希帕蒂娅出生在亚历山大城的一个知识分子家庭。父亲赛翁(Theon)是有名的数学家和天文学家,在著名的亚历山大博物院教学和研究,那是一个专门传授和研讨高深学问的场所。一些有名的学者和数学家常到她家做客,在他们的影响下,希帕蒂娅对数学充满了兴趣和热情。她开始从父辈那里学习数学知识。赛翁也不遗余力地培养这个极有天赋的女儿。10岁左右,她已掌握了相当丰富的算术和几何知识。利用这些知识,她懂得了如何利用金字塔的影长去测量其高度。这一举动,倍受父亲及其好友的赞赏,因而也就进一步增加了希帕蒂娅学习数学的兴趣,她开始阅读数学大家的专著。17岁时,她参加了全城之诺悻论的辩论,一针见血地指出芝诺的错误所在:芝诺的推理包含了一个不切实际的假定,他限制了赛跑的时间。这次辩论,使希帕蒂娅仅名声大震,几乎所有的亚里山大城人都明白她是一个非凡的女子,不仅仅容貌美丽,并且聪明好学。20岁以前,她几乎读完了当时所有数学家的名著,包括欧几里德的《几何原本》、阿波罗尼斯的《圆锥曲线论》、阿基米德的《论球和圆柱》、丢番图的《算术》等。为了进一步扩大自我的知识领域,公元390年的一天,希帕蒂娅来到了著名的希腊城市——雅典。她在小普鲁塔克当院长的学院里进一

  步学习数学、历史和哲学。她对数学的精通,尤其是对欧几里德几何的精辟见解,令雅典的学者钦佩不已,大家都把这位二十出头的姑娘当作了不起的数学家。一些英俊少年不由得对她产生爱慕之情,求婚者络绎不绝。但希帕蒂姬认为,她要干一番大事业,不想让感情过早地进人自我的生活。所以,她拒绝了所有的求爱者。此后,她又到意大利访问,结识了当地的一些学者,并与之探讨有关问题。大约公元395年回到家乡。这时的希帕蒂娅已经是一位相当成熟的数学家和哲学家了。

  希帕蒂娅从海外归来后,便成为亚历山大博物院里的教师,主讲数学和哲学,有时也讲授天文学和力学。在传徒授业之余,她还进行了广泛地科学研究,有力地推动了数学、天文、物理等学科的发展。

  希帕蒂娅在亚历山大进取传播普罗提诺和扬布里柯的新柏拉图主义哲学。新柏拉图主义将柏拉图的学说、亚里士多德的学说及新毕达哥拉斯主义综合在一齐,核心资料是由普罗提诺首创的关于存在物的统一与等级结构学说。希帕蒂娅的哲学兴趣比较倾向于研究学术与科学问题,而较少追求神秘性和排他性,强调哲学与科学,尤其是哲学与数学的结合。尽管此时基督教逐渐渗人博物院,宗教徒的活动也多了起来,她仍崇尚自由、民主,反对宗教束缚和专制。来自欧洲、亚洲、非洲的许多青年聚到亚历山大,拜她为师,学生们都十分喜欢听她讲课,说她不仅仅学识渊博并且循循善诱,讲话如行云流水,引人人胜。几年后,希帕蒂娅便成为亚历山大最引人注目的学者了。虽然当时的基督教与科学的对立日益明显,希帕蒂娅的声望还是吸引了一些基督教徒成为其学生。其中最著名的是来自西兰尼的西奈修斯,他之后成为托勒玫城的主教,他向希帕蒂娅请教学问的信件至今尚存,信中问及如何制作星盘(一种借助投影原理制作的反映星空的天文仪器)和滴漏(古代计时工具)及液体比重计。他热情赞扬希帕蒂娅,说她不仅仅是一位教师,并且像一位慈爱的母亲和善解人意的姐姐。

  希帕蒂娅与某些基督徒的友好关系并没有改善教会对她的态度。恰恰相反,教会为自我的教徒被一个不信教的科学家吸引过去而恼火,攻击她为“异教徒”。尽管希帕蒂娅发现自我已处于十分危险境地,但她相信邪不压正,仍然执着地追求着科学的提高。希帕蒂娅太热衷于自我的事业了,她把所有的爱都投人到学生身上及科学研究上,以至很少研究个人问题,而终身未婚。

  希帕蒂娅时代离《几何原本》成书已经六百多年了,由于当时没有印刷术,这本著作抄来抄去,出现了不少错误。希帕蒂娅同父亲一齐,搜集了能够找到的各种版本,经过认真修订、润色、加工及其很多评注,一个新的《几何原本》问世了。它更加适合读者阅读,因而立即受到广泛欢迎,以至成为当今各种文字的《几何原本》的始祖。

  希帕蒂娅曾独立写了一本《丢番图(算术>评注》,书中有她自我的不少新见解,并补充了一些新问题,有的评注写得很长,足以看作是一篇论文。希帕蒂娅还评注了阿波罗尼斯的《圆锥曲线论》,并在此基础上写出适于教学的普及读本。希帕蒂娅对圆锥曲线很人迷,写过好几篇研究圆锥曲线的论文。此外,希帕蒂娅还研究过托勒玫的著作,与父亲合写了《天文学大成评注》,独立写了《天文准则》等。这在当时是多么了不起的贡献啊!为了使读者了解更深刻,请看以下事实并作以比较。在15世纪中叶,象巴黎大学、牛津大学等著名大学的学生所学的数学资料极少,几何仅限于《几何原本》的前两卷,考试只限于第一卷,一般学生只能掌握第一卷的前4个命题。算术水平更低,一般大学生只会做加减法和乘法,而不会用除法计算。

  公元412年,来自耶路撒冷的西瑞尔当上了亚历山大的大主教,这是一个狂热的基督徒。他在全城系统地推行所谓反对“异教”和“邪说”的计划,新柏拉图主义也在“邪说”之例,这对希帕蒂娅是极为不利的。可是希帕蒂妞从不向基督教示弱,拒绝放弃她的哲学主张,坚持宣传科学,提倡思想自由。对那些找麻烦的基督徒,希帕蒂娅毫不退让,常把他们驳得哑口无言。但这不是一个崇尚一理性的社会。那些狂热的基督徒并不指望“说服”这位数学家和哲学家,只想有朝一日拔掉这颗眼中钉。一场有计划、有预谋的暗杀活动正在酝酿之中。

  公元415年3月的一天,希帕蒂娅象往常一样,乘着其漂亮的马车到博物院讲学。行至凯撒瑞姆教堂旁边,一伙暴徒立刻冲过去,拦住马车。他们把她从马车中拉下来,迅速拖进教堂。希帕蒂娅意识到,他们要对自我下毒手了,但她毫不畏惧,高声怒斥他们的无耻行为。灭绝人性的暴徒剥得她一丝不挂,然后用锐利的蚌壳割她的皮肉,直割得她全身血肉模糊,奄奄一息,暴徒们仍不罢手,又砍去她的手脚,将她那颤抖的四肢投人到熊熊烈火之中……。一颗数学明星就这样陨落了。处于垂死状态的希腊数学,最终断气了。

  希帕蒂娅虽已故去一千五百多年了,但她的科学精神鼓舞了一代又一代的学子,尤其是一些女数学家。有迹象证明,当代女数学博士的人数在不断增加。本世纪30年代以来的40年中,美国数学博士仅有7%是女性。1969-1972年间,这一数字为7.3%。1972-1974年再上升为9.11%,而在1974-1975年度1022个数学博士中有103个女性。1975年,美国国家科学院第一次有一名妇女进人,她就是罗宾逊(JuliaRobinson)。她在解决希尔伯特第10个问题的过程中作出了关键性的贡献。1976年,在《美国数学月刊》上刊登了一篇《数学与性别》的文章,探讨了女数学家很少的原因,结论是:①在中小学生中男女学生对数学的喜爱程度不一样;②教师和家长的态度是不鼓励女孩子学数学的;③数学仍然是排挤妇女的筛子;④大学数学教授中,妇女只占1.6%。

  希帕蒂娅在数学上的光辉成就,仍将鼓舞广大妇女向数学高峰不断挺进,将有越来越多的女数学家涌现出来。

  数学名人故事(九):

  16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原先一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。

  数学名人故事(十):

  数学家陈景润的故事

  陈景润(1933.5~1996.3)是中国现代数学家。1933年5月22日生于福建省福州市。1953年毕业于厦门大学数学系。由于他对塔里问题的一个结果作了改善,受到华罗庚的重视,被调到中国科学院数学研究所工作,先任实习研究员、助理研究员,再越级提升为研究员,并当选为中国科学院数学物理学部委员。

  陈景润是世界著名解析数论学家之一,他在50年代即对高斯圆内格点问题、球内格点问题、塔里问题与华林问题的以往结果,作出了重要改善。60年代后,他又对筛法及其有关重要问题,进行广泛深入的研究。

  1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿·威尔(A?Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。”陈景润于1978年和1982年两次收到国际数学家大会请他作45分钟报告的邀请。这是中国人的自豪和骄傲。他所取得的成绩,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,辉映三山五岳,召唤着亿万的青少年奋发向前。陈景润共发表学术论文70余篇。

  数学名人故事(十一):

  阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

  数学名人故事(十二):

  张衡是我国汉朝时期一位十分出名的大文豪,与司马相如、杨雄和班固并称汉赋四大家。张衡的《二京赋》、《思玄赋》和《归田赋》等都是流传千年的文学佳品,至今仍被无数的文人墨客把玩赏析。

  有的人觉得,文科和理科往往难以并重,那么张衡可能会打破这些人的固有印象。张衡不仅仅在文学上展现了非凡的成就,天文学、地理学和数学上,张衡也取得了丰硕的成果,成为一代数学家。

  张衡自小兴趣广泛,自学《五经》,贯通六艺,并且喜欢研究算学、天文、地理和机械制造等。在青年时期,他的志趣大半在诗歌、辞赋、散文上,他才高于世,却没有骄傲之情。

  《后汉书》提到,张衡曾写过一部《算罔论》,可惜这本书在唐代失传了。我们从《九章算术·少广》章第二十四题的刘徽注文中得知有所谓“张衡算”。

  从刘徽的这篇注文中明白,张衡给立方体定名为质,给球体定名为浑。张衡研究过球的外切立方体积和内接立方体积,研究过球的体积,其中还确定了圆周率值为10的开方,虽然这个值比较粗略,但却是中国第一个理论求得π的值。

  数学名人故事(十三):

  伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自我去找最难的数学原著研究,一些教师也给他很大帮忙。教师们对他的评价是“只宜在数学的尖端领域里工作”。

  数学名人故事(十四):

  数学家欧拉小学时提问“星星”遭开除

  事情是因为星星而引起的。当时,小欧拉在一个教会学校里读书。有一次,他向教师提问,天上有多少颗星星。教师是个神学的信徒,他不明白天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个教师不懂装懂,回答欧拉说:“天有有多少颗星星,这无关紧要,只要明白天上的星星是上帝镶嵌上去的就够了。”

  欧拉感到很奇怪:“天那么大,那么高,地上没有扶梯,上帝是怎样把星星一颗一颗镶嵌到一在幕上的呢上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢上帝会不会太粗心了呢”

  他向教师提出了心中的疑问,教师又一次被问住了,涨红了脸,不知如何回答才好。教师的心中顿时升起一股怒气,这不仅仅是因为一个才上学的孩子向教师问出了这样的问题,使教师下不了台,更主要的是,教师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在教师的心目中,这可是个严重的问题。

  在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝“坚持一致”,教师就让他离开学校回家。可是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎样连天上的星星也记不住他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。

  回家后无事,他就帮忙爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。

  爸爸的羊群渐渐增多了,到达了100只。原先的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

  小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原先的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,仅有稍稍移动一下羊圈的桩子就行了。

  父亲听了直摇头,心想:“世界上哪有这样便宜的事情”可是,小欧拉却坚持说,他必须能两全齐美。父亲最终同意让儿子试试看。

  小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原先的40米边长截短,缩短到25米。父亲着急了,说:“那怎样成呢那怎样成呢这个羊圈太小了,太小了。”小欧拉也不回答,跑到另一条边上,将原先15米的边长延长,又增加了10米,变成了25米。经这样一改,原先计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:“此刻,篱笆也够了,面积也够了。”

  父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,并且还稍稍大了一些。父亲心里感到十分高兴。孩子比自我聪明,真会动脑筋,将来必须大有出息。

  父亲感到,让这么聪明的孩子放羊实在是及可惜了。之后,他想办法让小欧拉认识了一个大数学家伯努利。经过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

  数学名人故事(十五):

  古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。

  数学名人故事(十六):

  数学名人小故事—高斯(1777~1855),德国数学家、物理学家和天文学家,英国皇家学会会员。

  高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的《算术研究》,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国着名高等学府天文台台长,并一向在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)着作,提出了404项科学创见,完成了4项重要发明。

  高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。

  数学名人故事(十七):

  数学名人小故事—诺伊曼(1903-1957),美籍匈牙利数学家,美国科学院院士。

  诺伊曼出生在一个犹太银行家的家庭,是位罕见的神童。他8岁掌握微积分,12岁读懂《函数论》。在他成长的道路上,曾有这样一段趣味的故事:1913年夏天,银行家马克斯先生登出一则启示,愿以10倍于一般教师的聘金,为11岁的长子诺伊曼聘请一位家庭教师。尽管这诱人的启示,曾使许多人怦然心动,但终没有人敢去教导这样倾城皆知的神童……他在21岁获得物理-数学博士之后,开始了多学科的研究,先是数学、力学、物理学,又转到经济学、气象学,而后转向原子弹工程,最终,又致力于电子计算机的研究。这一切,使他成为不折不扣的科学全才。他的主要成就是数学研究。他在高等数学的许多分支中都作出了重要贡献,其最卓越的工作是开辟了数学的一个新分支---对策论。1944年出版了他的杰出着作《对策论与经济行为》。第二次世界大战期间,为第一颗原子弹的研制作出重要贡献。战后,运用他的数学才能指导制造大型电子计算机,被人们誉为电子计算机之父。

  数学名人故事(十八):

  数学名人小故事-康托尔

  由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,之后几年,康托尔对这类“无穷集合”问题发表了一系列文章,经过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力最终摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。

  真金不怕火炼,康托尔的思想最终大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。

顶一下
(0)
0%
踩一下
(0)
0%
分享到:
最新文章推荐文章
热门文章推荐文章

扫码关注我

微信公众号